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What is Cluster Analysis?

Cluster: a collection of data objects

– Similar to one another within the same cluster

– Dissimilar to the objects in other clusters

Finding groups of objects such that the objects in a group will be 

similar (or related) to one another and different from (or unrelated to) 

the objects in other groups
Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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General Applications of Clustering 

◼ Pattern Recognition

◼ Spatial Data Analysis 

◼ create thematic maps in GIS by clustering feature 
spaces

◼ detect spatial clusters and explain them in spatial data 
mining

◼ Image Processing

◼ Economic Science (especially market research)

◼ WWW

◼ Document classification

◼ Cluster Weblog data to discover groups of similar 
access patterns
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Examples of Clustering Applications

◼ Marketing: Help marketers discover distinct groups in 

their customer bases, and then use this knowledge to 

develop targeted marketing programs

◼ Land use: Identification of areas of similar land use in an 

earth observation database

◼ Insurance: Identifying groups of motor insurance policy 

holders with a high average claim cost

◼ City-planning: Identifying groups of houses according to 

their house type, value, and geographical location

◼ Earth-quake studies: Observed earth quake epicenters 

should be clustered along continent faults
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Types of Clustering

Partitional Clustering
– This method divides a given database of n objects

or data tuples into m partitions such that m<=n,
where each partition is a cluster.

Methods:

➢ K-means:

Each cluster is represented by the

center of the cluster

➢ K-mediods:

Each cluster is represented by one

of the objects in the cluster
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Types of Clustering

Hierarchical Clustering
– A Hierarchical clustering method works by grouping data 

objects into a tree of clusters.

Methods:

➢ Agglomerative Clustering(Bottom-up) 

➢ Divisive Clustering(Top-Down)  
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Types of Clustering

Density-based
– A cluster is a dense region of points, which is separated by 

low-density regions, from other regions of high density. 

– Used when the clusters are irregular or intertwined, and when 
noise and outliers are present. 

Methods:

➢ DBSCAN

➢ DENCLUE

➢ OPTICS

Density-based clusters
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K-means Clustering(Centroid based technique)

Partitional clustering approach 

Each cluster is associated with a centroid (center point) 

Each point is assigned to the cluster with the closest 
centroid

Number of clusters, K, must be specified

The basic algorithm is very simple
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K-means Clustering(Example)
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K-means Clustering(Example)
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Evaluation of K-means

Strength

– Relatively efficient: O(tkn), where

n is # objects,

k is # clusters, and

t is # iterations.

Normally, k, t << n.

Weakness

– Applicable only when mean is defined, then what about
categorical data?

– Need to specify k, the number of clusters, in advance

– Unable to handle noisy data and outliers

– Not suitable for clusters with non-convex shapes
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Evaluating K-means Clusters

Most common measure is Sum of Squared Error (SSE)

– For each point, the error is the distance to the nearest cluster

– To get SSE, we square these errors and sum them.

– x is a data point in cluster Ci and mi is the representative point for 
cluster Ci

◆ can show that mi corresponds to the center (mean) of the cluster

– Given two clusters, we can choose the one with the smallest 
error

– One easy way to reduce SSE is to increase K, the number of 
clusters

◆ A good clustering with smaller K can have a lower SSE than a poor 
clustering with higher K
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K-means Clustering(Example)
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Variations of the K-Means Method

◼ A few variants of the k-means which differ in

◼ Selection of the initial k means

◼ Dissimilarity calculations

◼ Strategies to calculate cluster means

◼ Handling categorical data: k-modes

◼ Replacing means of clusters with modes

◼ Using new dissimilarity measures to deal with categorical objects

◼ Using a frequency-based method to update modes of clusters

◼ A mixture of categorical and numerical data: k-prototype method
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What is the problem of k-Means Method?

◼ The k-means algorithm is sensitive to outliers !

◼ Since an object with an extremely large value may substantially 

distort the distribution of the data.

◼ K-Medoids:  Instead of taking the mean value of the object in a 

cluster as a reference point, medoids can be used, which is the most 

centrally located object in a cluster. 
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Bisecting K-means

Bisecting K-means algorithm
– Variant of K-means that can produce a partitional or a 

hierarchical clustering
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Bisecting K-means Example
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Limitations of K-means

K-means has problems when clusters are of 

differing 

– Sizes

– Densities

– Non-globular shapes

K-means has problems when the data contains 

outliers.
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Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.

Find parts of clusters, but need to put together.
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Overcoming K-means Limitations

Original Points K-means Clusters
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Overcoming K-means Limitations

Original Points K-means Clusters
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Hierarchical Clustering 

Produces a set of nested clusters organized as a 

hierarchical tree

Can be visualized as a dendrogram

– A tree like diagram that records the sequences of 

merges or splits
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Hierarchical Clustering

Two main types of hierarchical clustering

– Agglomerative:  

◆ Start with the points as individual clusters

◆ At each step, merge the closest pair of clusters until only one cluster 

(or k clusters) left

– Divisive:  

◆ Start with one, all-inclusive cluster 

◆ At each step, split a cluster until each cluster contains a point (or 

there are k clusters)

Traditional hierarchical algorithms use a similarity or 

distance matrix

– Merge or split one cluster at a time
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Agglomerative                    Divisive
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